Loading...
Parallelograms 3
A
B
C
Result
. . . .

Identify the missing statement or reason to complete the two-column proof. Type the letter of your answer in each blank.

Given:   STUYRD
SU ¯ RD ¯
RD ¯ DY ¯
ST ¯ SU ¯
Prove:   Quadrilateral SUDR is a parallelogram.
Choices:
a. If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
b. Corresponding Angles Postulate
c. DRSSUD
d. Isosceles Triangle Theorem
e. mSRU=mRUD
f. Alternate Interior Angles Theorem
g. If two pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
h. Transitive Property of Angle Congruence
i. STURSU
j. mDRU+mSRU =mRUD+mSUR
k. SRURUD
l. Angle Addition Postulate

Proof:
Statements Reasons
1. STUYRD
SU ¯ RD ¯
RD ¯ DY ¯
ST ¯ SU ¯
1. Given
2. DRUSUR
2.
3. mDRU=mSUR
3. Definition of congruent angles
4.
4. Addition Property of Equality
5. mDRS=mSUD
5.
6.
6. Definition of congruent angles
7. YRDRSU
SUTRDU
7.
8.
8. Statements 1 and 7, and Transitive Property of Angle Congruence
9. STUSUT
9. Statement 1 and
10. RSURDU
10. Statements 7 to 9, and
11. Quadrilateral SUDR is a parallelogram.
11. Statements 6 and 10, and
0
/ 11