Identify the missing statement or reason to complete the two-column proof. Type the letter of your answer in each blank.
Given: |
|
Prove: | Quadrilateral SUDR is a parallelogram. |

Choices:
a. | If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. |
b. | Corresponding Angles Postulate |
c. | |
d. | Isosceles Triangle Theorem |
e. | |
f. | Alternate Interior Angles Theorem |
g. | If two pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. |
h. | Transitive Property of Angle Congruence |
i. | |
j. | |
k. | |
l. | Angle Addition Postulate |
Proof:
Statements | Reasons | ||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|